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Ointroduction

For any A-algebra B there exist groups HC,(B/A), called the
Cyclic Homology groups of B over A (see [Ca], [L&Q]). These groups
can be constructed with the help of the exterior derivation operator
on the Hochschild complex. For example, when X is a smooth affine
variety in CN and B is the ring of X, then one has:

HC,(X) = o /7do! & H?X,00 6 H*X O ® . . ..

where HC,(X) : = HC,(B/C). We see that Cyclic Homology contains
apart from purely topological contributions also some analytic
information. Because of the relation with algebraic K-theory ([F&TJ,
characteristic classes { [K]) and thus algebraic cycles, this theory
aroused considerable interest and gave hope to get more computable
invariants.

For this reason it is of interest to compute the Cyclic Homology
for the simplest non - trivial case: the case of the local ring of an
isolated hypersurface singularity. In [F&T] Cyclic Homology (or rather
additive K - theory) for the more general case of isolated complete
intersection singularities is computed in terms of Crystalline Cohomo-
logy. In this note we will be more explicite in our answer. In [Bry]
one can find computions of the Cyclic Homology of some interesting
non - commutative rings.

In ordinary de Rham theory the exterior derivation operator d can
be considered as the basic link between Algebra and Topology. In our
computation of Cyclic Homology we use transcendental - topological
arguments first introduced by Brieskorn ([Bri]) in the study of the
local GauB - Manin connection. We do not know of any purely
algebraic proofs of these results.
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Notations and Conventions

In the rest of this note we use the following notations and
conventions. We put:

B = k(xo,x],...,xn> R
A = k(B

f ¢eB,

By= B/ ,

Ag= k.

B is considered as an A-module by letting t act as multiplication by
the element f, the equation of our hypersurface. The brackets { > can

mean[ 1,{},[ ], . etc. and sometimes even [ ]. Tensor products
should be read according to this context. When we refer to the whole
set of variables x; we sometimes use a single symbol x . The symbol
X will stand for the variety defined by the function f.

In § 1 we compute relative and absolute Hochschild Homology
(i.e. of B over A and of B, over A, ). For this, k can be any field. In
§ 2 we compute relative and absolute Cyclic Homology and here we
have to assume k = €, but undoubtedly the statements are true over
any reasonable field when they make sense.

We remark that for isolated hypersurface singularities it does not
really matter which local ring we take, but for non - isolated singu-
larities it probably does matter.



§4. Hochschild Homology

The Hochschild homology H,(B/A) of B over A is defined as the
homology of the Hochschild complex (B° , b) (see [C&E]D :

B"= BRyB®, .. ®AB ; (n+1)- times 1.1

= (-0
blay®a,®. . .®a ) = (-D" a a,®@a@. . .®a,_; +

_pi#
X + 2 (-nt a,®. . ®a.a ® . ®a .

Of course, it is quite impossible to compute with this definition, but
when B is A-flat then H,(B/A) = Tor{(B,B); U = B®, B, so we really
only need a flat resolution of B asa U - module. With A and B as
in the introduction we have:

B®,B = P/ F with P := BOKB ~ k<y, Zz> 1.2)

and F = f®1 - I1Qf = f(y) - f(Z) .

Here ¥ and Z are (n+l)-tuples of variables.

To get a resolution of B over U one can first resolve B over P by a
Koszul complex. As U is a hypersurface quotient of P one can obtain
a resolution over U by the method of [Ei]l. We prefer an essentially
equivalent method: we first replace U by a differential graded ring
Ple], with e a new element in degree 1 and a differential d such that
d e = F. The kernel of the obvious map Ple]—B is (e,y-z)P[e], so
it is generated by a regular sequence. Hence, B is resolved over P[e]
by a Koszul complex:

Ple] ® A\ dx ® T de (1.3)

This complex has a bigrading (lel,|d]) by counting the number of e's
and the number of d's in an expression. The complex carries two
differentials. In the first place there is the Koszul differential 3 of
degree (0,-1), defined by the relation §(dX ) =y - Z . (We do not write
indices for X, ¥ or Z ). Further, there is a differential induced by 3
of degree (-1,0). When we write

f(y) - f(2) = > Ji . (yi - Zi) 1.4)
for some choice of the J; , then one can take:

dde) = T Jj. dx; . (1.5)



To get the Hochschild homology we tensor this complex with B,
which means that we put everywhere ¥ and Z equal to X. Hence, the
Koszul differential vanishes identically and the J; are replaced by the
partial derivatives of f with respect to the coordinates x; . Because
I'p(de) is just a vector space of dimension 1, we may suppress this
from our notation. The conclusion now is:

Proposition (1.1) : The Hochschild homology of B over A is isomorphic
to the cohomology of the total complex Tot(L,,),

where L., is the double complex with terms
- OP- . r -
L, = OP9; 07 := BB/ (dw = 07, (1.6)

and with df A : Lp q——.Lp as horizontal differential and zero as

vertical differential.

._]q

Note that the fact that one differential is zero gives rise to a
direct sum decomposition in the Hochschild homology. So far this
holds for every f.

fiemma (1.2) : For an isolated hypersurface singularity f the complex
(Q°, df/\) only has homology in degree n+1.

proof : The partial derivatives of f form a regular sequence and the

above complex can be identified with a Koszul - complex. In
fact, one can take this as a definition of an isolated hypersurface
singularity. ®

This unique non-zero cohomology group Q®*1/dfAQ" is a finite
dimensional vector space over k. Its dimension is usually denoted by
 and is called the Milnor number of the singularity (see [Lo]).

Put Of : = QP/ df AQP~! ~ QFp /. These are the so-called relative
differential forms of the map f. When we use this notation, then the
above proposition and lemma together give the following result:

“Theorem (1.3) : The Hochschild homology of an isolated hypersurface
singularity is given by:

H,(B/A) = 0 si= 0.0+,

- 1
k=0],

0

H,, o4y (B/A)



To compute the absolute Hochschild homology H,(B,/A,) one can
use the following easy to prove general fact.

Lemma (1.4) 1+ Let B— B, be a base change diagram of rings, with

T 1

A—A,
B an A-flat module. Then there is a spectral sequence
2 A
qu = Torp O(Hq(B/A), By) = qu(BOIAo) .

Cotollary (1.5) : For the rings under consideraton we have a long
exact sequence:

f.
... —H, ,, (By/Ag) —H, (B/A) —H, (B/A) —H, (Bo/Ag) —...

From this exact sequence we see that to compute absolute Hochschild
homology, we need to know how multiplication by the element f acts
on the relative Hochschild homology. For this we use the following
simple lemma:

Lemma (1.6) : depth (QR) > n+1-p .

proof: By the de Rham lemma, the sequences
p-—] df/\ N

P sy OP N

0 —" Q f v Q 14 Qf 1 4 0
are exact for p = 1, 2, . . , n+l. Now use induction starting with
depth(B)=n+1 . ]
So in particular, we see that all the Q? ,p=0,1,. ., n, are torsion

free, hence multiplication by f is injective. Only on Q'}H multiplication
by f has a kernel and a cokernel, which we denote by K and T respec-
tively. Remark that K and T have the same dimension. This dimension
is usuallly called the Tjurina number of the singular point (see [Lo]).
This also is the dimension of the space of first order deformations
of the germ X. As a corollory of the above results we get:



“Theorem (1.7) : The absolute Hochschild homology H,(B,/A,) of an
isolated hypersurface singularity X is given by:

H,(B,/Ay) ! 0,1,..,n#

u
o]
>
n

Hn+1 +2k (BO/AO)

1
o |
S
P
[}
e
=

i
~

Hn+1+2k+l (BO/AO)

Remark (1.8) : For a general complete intersection defined by
functions f, , f, .. .. fi e B= k{xXg, X3, - - - Xpp”

A= k{t; , t,,..,t, > one can still define a complex like L  to

compute the Hochschild homology. In that case one finds that:

H, (B/7A) = Qlﬁ /A for k < ¢ : = codimension of the singular locus.
But the cohomology for k > ¢+l seems to lack any interesting inter-

pretation.

Rematk (1.9) : The fact that L__appears as a direct sum of complexes
gives a direct sum decomposition (trivial in our case)

for Hochschild homology. This is a very general phenomenon in

characteristic 0. In fact, a theorem of Quillen [Q] says:

H (B/A) = & H (ALg,a)
n oD HALp/

where L p/a is the cotangent complex of B over A.



§2. Cyclic Homology

Cyclic homology is defined as the homology of a certain double
complex (see [L&Q]). We call this double complex (C , ; b, R). It has
the following shape:

B®3 ¢ R B®2 ¢ R B
bl bl @)
B®2 R B

The verticals of this complex are formed Hochschild complexes
(1.0 of § 1. R is a certain A-linear map and is called Connes’ operator.
(Usually this operator is denoted by B, but for obvious reasons we
choose another symbol). In as far Hochschild homology can be seen
as a generalization of Kihler differentials, this operator R can be seen
as a generalization of exterior derivative.

Now we want to compute the cyclic homology HC,(B/A) for the
rings A and B we have in mind. As we already know the Hochschild
homology (Theorem (1.3)) it is tempting to try to use the spectral
sequence:

1 - (2.2)
El, = Hqp®B/A = HC,,,(B/A)

which arizes from (2.1). The problem with this approach is that it is
not totally clear what the higher differentials are. However, it is
convenient to replace the columns of the above complex by the
complex Tot(L ) of §1,(1.6) which is quasi-isomorphic to it. It turns
out that the operator R can be lifted to the L - level, where it can
be identified with ordinary exterior differentiation of forms. Thus one
gets:



Lemma (2.1) : Let C__, be the triple complex with

Cogr = QP YT as terms
and df/\:Cpqr —— Chgra
d :Cpqr —_— Cpq_h,

as differentials . (The third differential is the zero map.).
Then Tot(C, ) and Tot(C ) are quasi-isomorphic.

So we can use the complex C, to compute HC,(B/A). As one of
the differentials of the complex C_ ,  is the zero map, we get a direct
sum decomposition for cyclic homology. Let us analyze the layers

Cp“ for various values of p . Each such layer contributes a summand
in HC,(B/A):

HC_(B/A) = D H_( Tot(C, ; dfA, d) . 2.3)

p+tg=m
The layers C , have the following form:

Case A, triangular shape :+ p <n +1

(2.4)

t
ALN

r
“~»

TR
D —

So in the horizontal directions we find truncated de Rham -complexes
and in the vertical directions Koszul-complexes on the partial
derivatives of the function f.



Case B, trapeaium shape :+ p=n+1+k;k20.

df A\

——

e . ...
| ]
" o .. (2.5)
dml 1
0 — P& — .
| o
i | |
0« o 0% ¢ o B
r d d d d
N |
q at place q = k

So in this case we also get some complete de Rham complexes.

We now compute the cohomology of each layer, using the spectral
sequence of the colomn filtration. These columns do not carry much
cohomology, by lemma (1.2). The result is:

Case;A: El

qr

Q‘}_q forr=0andq=0,1,..,p.
= 0 otherwise.

Case B : E’qr= Q’}H ifq+r=k
= QP forr=0

f
0 otherwise.

To compute further in the spectral sequence, we need to know
at least the cohomology of the relative de Rham complex ( Q'f ;d )

w

0 »B :Q’f Ca »Op :Q'f‘" »0 2.6)



Fortunately, the cohomology of this complex is known, and by
now classic. We quote the result.

Theorem (Brieskoen - Sebastiant) : The cohomology of the relative
de Rham complex (2.6) is as
follows:

Hi(Qf) =0foralli#0,n,

Ho(Qf) is a free A-module of rank 1,

H™Qg) is a free A-module of rank y = dim(Q'tfH) .

For a proof of this result, see [Bri] or [Lo]. Especially the fact that
H™Qg) is a free module seems to be rather deep.

We remark that although the statement of the above result is
purely algebraic we do not know of any proof which does not use at
some point transcendental-topological methods. So at this point we
should take k= Cand { > ={}or [ ]

Besides the group H :=

H2(Qp = { we 07 In with do=dfAn M/(dFAQ™ + d™1)
Brieskorn introduced further groups H' and H":

H' := Q"/(dfAQ™ Y + do™1)

2.7

H":= 0" 7dfAdQ™ ).

These groups are also free A-modules of rank yu. H, H' and H" are
usually called the Brieskorn modules of the singularity. There are also
A-linear inclusion maps:

H «—— H ; W —© 2.8)
H <— H" ; w — df Aow

and (only C-linear) operators J:

& : H Z o w i @ — 2.9
at:H'L»H" ; ®w — dw .

- 10 -



So the groups H, H', H" are related by a chain of inclusions (2.8).
The operator 9 is called the Jlocal GauB-Manin connection and induces
C-vector space isomorphisms between these groups. Further, it is easy
to see that one has natural identifications:

H/H —— H/H ~ 0§ (2.10)
t

The group H can be used to describe n-cohomology classes in the f
fibres (dual to the vanishing cycles). The operator d; then describes
the differentiation of period integrals. It should be kept in mind that
d¢ behaves formally as differentiation of forms with respect to f = t.
For more details we refer to [Ph].

After this short intermezzo, we can go on with our computation
of the cohomology in a layer C, , . In Case A , there is no problem:
the spectral sequence degenerates at EZ. The result is:

Case A 1 psn+l .

E2 =E ®=A for q=p and r=0

o /dQ‘}“ q=r=0

=0 otherwise .
Case B : p = n+l+k.

Eir s Q'FL] for g+r=k and r>1
= H q=k+1 and r=0
= A qg=p and r=0
=0 otherwise .

In this last case there is a non-zero d, in the spectral sequence. It
is a map d, : H -——-—bQ';-H . Running through the definitions, we see
that it is represented by the following operation:

d, : H ———%Q'f'.ﬂ ; w with dw=dfAn —dy . (2.11)

_11__



As every (n+1)-form is the d of some n-form, we see that the map
d, is surjective. The kernel of d, can be identified with the set of
elements w in H for which ¢; v is still in H (instead of in the bigger
space HY). It is sensible to denote this kernel by at-‘ H. It is again a
free A-module of rank u. So the effect of the d, differential is to kill
off a copy of Q’;ﬂ and to replace H by 6{’ H. The same pattern is
repeated for the higher differentials of the spectral sequence. We get
the following result:

Case B : p=n+l+k.

EX? = ED = o“H for  q=k# and r=0

= A q=p and r=0

= 0 otherwise .

This completes the computation of the cohomology of the layers
Cp“ . The decomposition formula (2.3) now tells us that in fact we
have computed the cyclic homology HC, of B over A. Putting things
together we find the following theorem.

“Theorem (2.2) : The relative Cyclic Homology HC,(B/A) of an isolated
hypersurface singularity is given by:

HC,(B/A) = ofzdok? (i<n)

HC_ .9, (B7A) =0 ® A in even degrees.
- 3k

HC, 110kn(B/A) = o " H

We thus find in degrees < n the same groups as if B were smooth
over A. It is only in the stable range (degree 2 n+1) that the presence
of the isolated singular point is detected by cyclic homology. As an
A-module HC_,, , (B/A) alternates between O and a free module of
rank u, the Milnor number of the singularity (plus of course A in even
degrees).

__12._



From (2.1) one can derive an exact sequence relating Cyclic and
Hochschild homology (see [L&QD:

I S R
<o — H, (B/A) —HC, (B/A) —HC, _,(B/A) —H, _ (B/A) —--

(2.12)

It is instructive to combine the (4.3) and (2.2) with (2.12). The relevant
piece in the stable range reads as follows:

- 13 -

S
YH, ik YHC, 2k 4 LS "H o —

0 — &*H — H — op! —o0

From this we see that the suspension operators S here correspond to
the canonical inclusions of the system ... C at—2 H C g "THcH K
is known that ) 3 * H = {0} ( see [Ph]), so making S invertible would
kill all interesting information.

Finally, we can compute the absolute cyclic homology by looking
at the action of multiplication by f on the relative groups. This is
completely analoguous to the arguments used to get theorem (1.7)
from (41.3). The only crucial point is that the Brieskorn module H is
A-free. The result is:

“Theotem (2.3) + The absolute Cyclic homology HC,(B, /A, ) of an
isolated hypersurface singulartity is given by:

= ol i1
HC;(B,7Ay) = Qp/dQy (isn)
HC_ ,.0k(Bo/Ag) = 0 ® C in even
degrees
HC_, 0001 Bo/Ay) = 9 H/t3{"H (xCH)

This copy of C in the even degrees of course can be identified
n+1

naturally with HC,(C/C). The factors ag“ H/t.9y kK H are, just as Q £
is, vector spaces of dimension u. However there is no natural way to

- 13 -



identify these spaces with each other. It is easy to verify that one has
the following isomorphisms:

o of¥H/to*H —— H/(t+kogHH (2.14)

Remark (2.4) : In the case that the hypersurface f is quasi-homogen-

eous the situation is much simpler and one in fact can
avoid reference to the theorem of Brieskorn-Sebastiani. The reason
is that the operator oy 1 can be described in simple terms: if w ¢ H is
an n-form of quasi-homogeneous weight o, then d¢ 1 w= (t/o).w. (This
can be seen by applying the Lie-derivative with respect to the Euler
vector field to the defining relation d at"‘ w = dfAw) A further
simplification arises in the quasi-homogeneous case: by the C*-action
every local result is actually globally true. So theorems (2.2) and (2.3)
are true for {,> = [, ] in the quasi-homogeneous case.

Remark (2.5) ¢ In the theory of the GauB-Manin connection associated

to a function f one studies the so-called GauB-Manin
system. This is the D-module which is the cohomology of the complex
( O'[D], d ) on which there are operators t and d¢ . (see [Ph], p.159).
This complex bears some relation to the layers C (2.4) and (2.5).
Both complexes are truncations of the bi-infinite double complex based
on Q'and the operators d and df/A\ . It would be interesting to find
a general relation between D- modules and Cyclic Homology.

R. Buchweitz D. van Straten
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University of Toronto Rijksuniversiteit Utrecht
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Canada. The Netherlands.
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